STEREOSELECTIVE TOTAL SYNTHESIS OF (+)-VINCAMINE Cs. Szántay, L. Szabó and Gy. Kalaus

Institute of Organic Chemistry, Technical University, Budapest, Hungary (Received in UK 5 December 1972; accepted for publication 14 December 1972)

Two non-stereoselective syntheses of the racemic form of vincamine (\underline{la}) , a therapeutically useful¹ alkaloid, are described in the literature^{2,3}. The purpose of our present work was a stereoselective synthesis of this compound

The reaction of the enamine $\underline{2}$, described by <u>Wenkert</u>⁴, <u>so thys</u> acrylate gave an adduct in excellent yield. However, either catalytic (Fd) or chemical (NaBH₄) reduction of the adduct yielded the two possible stereoisomers, prepared earlier by <u>Kuehne</u>², in a ratio almost 1:1.

If the addition reaction was carried out with \propto -acetoxyacrylic acid methyl ester⁵ instead of acrylic acid ester, and the product [perchlora: salt mp. 152-154°, IR ν_{\max}^{KBr} (cm⁻¹): 3570, 3480 (NH), 1740, 1736 (CO), 1630, 1525 (C=N)] was reduced catalytically (Pd-methanol), only one stereoisomer ($\underline{2a}$) [mp. 144° from methanol, IR ν_{\max}^{KBr} (cm⁻¹): 3420 (NH), 2800-2730 (weak <u>Bohlwann</u> bands), 1740 (CO)] was obtained in a good yield.

Using NaBH₄ as a reducing agent, $\underline{2a}$ was accompanied by a small amount of another epimer which, after deacetylation, nad mp. 165-167^o (IR ν_{max}^{KBr} (cm⁻¹): 3450 (NH), 3380 (OH), 2800-2730 (strong <u>Bohlmann</u> bands), 1745 (CO)].

No. 3

Deacetylation of $\underline{3a}$ by sodium methoride in methanol furnished the alcohol $\underline{3b}$, which had mp. 234° [IR y_{max}^{KBr} (cm⁻¹): 3420 (broad, NH, OH), 2820-2720 (weak <u>Bohlmann</u> bands), 1745 (CO)]; this is 30° higher than the mp. reported by <u>Gibson</u> and <u>Saxton³</u>, so probably $\underline{3b}$ and the earlier described compound, are epimers on the carbon atom bearing the hydroxyl function.

The alcohol $\underline{3b}$ was readily oxidized by $Ag_2CO_3/Celite$ (<u>Fétizon</u> reagent) in benzene to a mixture of vincamine and 14-epivincamine. However, if the oxidation was carried out at the boiling point of xylene, vincamine was obtained as the main product.

When 14-epivincamine $(\underline{1}\underline{b})$ was boiled in xylene in the presence of <u>Fétizon</u> reagent or another Ag⁺ or Hg⁺ compound, it readily epimerized to a mixture containing about 80% vincamine and 20% 14-epivincamine. Epimerization can be best achieved by using sodium methoxide in methanol, when the conversion $\underline{1}\underline{b} \rightarrow \underline{1}\underline{a}$ is practically quantitative.

Thus a fully stereoselective synthesis of vincamine has been achieved. The resolution of racemic vincamine was effected with dibenzoyltartaric

acid in methanol. (+)-Vincamine was oxidized at room temperature in acetic acid by

(+)-vincamine was origined at four semperature in accord and by $K_2Cr_2O_7$ to 3,4-dehydrovincamine, isolated as the perchlorate salt (mp. 185-186°, $IR y _{max}^{KBr} (cm^{-1})$: 3400 (OH), 1740 (CO), 1580 (C=N)]. 3,4-Dehyrovincamine could not be reduced to vincamine, but only to 3-epivincamine which has the thermodynamically more stable <u>trans</u> C/D ring junction (mp. 189-190°, $IR y _{max}^{CHCl}$ 3: 2750-2805 cm⁻¹, (<u>Bohlmann</u> bands)]. 3-Epivincamine is also a natural alkaloid isolated by Cava et al.⁶

References

L. Szporny and K. Szász, Arch. Exp. Path. Pharm., <u>236</u>, 296 (1959).
M.E. Kuehne, J. Amer. Chem. Soc., <u>86</u>, 2946 (1964); Lloydia <u>27</u>, 435 (1964).
K.H. Gibson and J.E. Saxton, Chem. Commun., <u>1969</u>, 1490.
E. Wenkert and B. Wieckberg, J. Amer. Chem. Soc., <u>87</u>, 1580 (1965).
J. Wolinsky and R. Novak, J. Org. Chem., <u>29</u>, 3596 (1964).
M.P. Cava, S.S. Tjoa, R.A. Ahmed and A.I. DaRocha, J. Org. Chem., <u>33</u>, 1055 (1968).